Seat N	lo.:	Enrolment No.				
Subje	GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV(NEW) – EXAMINATION – SUMMER 2019 Subject Code:2140001 Date:09/05/201 Subject Name: Mathematics-4					
Time: 02:30 PM TO 05:30 PM Total Marks: 70 Instructions:						
	2. N	ttempt all questions. Iake suitable assumptions wherever necessary. igures to the right indicate full marks.				
Q.1	(a)	Find the principal argument of $z = \frac{i}{\sqrt{3}+i}$	03			
	(b)	-511	04			
	(c)	(i) Expand $f(z) = z\cos(\frac{1}{z^3})$ in Laurent's series near $z = 0$ and	07			
		identify the singularity. (ii) Show that if c is any n^{th} root of unity other than unity itself, than $1 + c + c^2 + \dots + c^{n-1} = 0$.				
Q.2	(a)		03			
	(b)		04			
	(c)	domain <i>D</i> and find its conjugate $v(x, y)$. Find the Mobius transformation that maps the points $z = 1$, <i>i</i> , -1 into	07			
		the points $w = i$, 0, $-i$. Hence find the image of $ z = 1$.				
	(c)	Evaluate the integral $\int_{C} \operatorname{Re}(z^2) dz$, where C is the boundary of the	07			
Q.3	(a)	some with vertices 0, <i>i</i> , 1 + <i>i</i> , 1 in clockwise direction. Evaluate $\int_{0}^{0} (x^{2} + iy) dz$ along the path $y = x^{2}$.	03			
	(b)	Find the residue at each pole of $f(z) = \frac{ze^{iz}}{z^2 + 9}$	04			
	(c)	Expand $f(z) = \frac{1}{(z+1)(z-2)}$ in Laurent's series in the region (i) $ z < 1$ (ii) $1 < z < 2$ (iii) $ z > 2$.	07			
Q.3	(a)	OR	03			
		Write the Cauchy integral formula and using it evaluate $\int_C \frac{\cos z}{z + \pi} dz$	-			
	(b)	where C is the circle $ z = 4$. Evaluate $\oint \frac{2z-1}{z(z+1)(z-3)} dz$, where C is the circle $ z = 2$.	04			
	(c)	Using the residue theorem, evaluate $\int_{0}^{2\pi} \frac{d \theta}{5 - 3\sin \theta}$	07			

Download all NOTES and PAPERS at StudentSuvidha.com

1

Q.4	(a)	Find the positive root of the equation $2 \sin x - x = 0$ using bisection	03
¥.4	(a)	method in six stages.	05
	(b)	Solve the following system of equations by Gauss Seidel method:	04
		28x + 4y - z = 32 $2x + 17y + 4z = 35$ $x + 3y + 10z = 24$	
		Correct up to two decimal places.	
	(c)	Using the power method find the largest eigenvalue of the matrix	07
		$\begin{bmatrix} 1 & -3 & 2 \end{bmatrix}$	
		$ \begin{bmatrix} 1 & 5 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5 \end{bmatrix} $	
		6 3 5	
		OR	
Q.4	(a)	Use the secant method in three stages to find the root of the equation	03
		$\cos x - xe^x = 0.$	
	(b)	Find an approximate value of $f(3.6)$ using Newton's backward	04
		difference formula from the following data:	
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
		f(x) -5 1 9 25 55	07
	(c)	Using Lagrange's interpolation formula find y when $x = 5$ from the following table:	07
		x 1 2 3 4 7	
		y 2 4 8 16 128	
Q.5	(a)	Use Simmon's 1/2 rule to evaluate $\int_{-\infty}^{2} \frac{x}{2} dx$. Take $h = 0.25$	03
		Use Simpson's 1/3 rule to evaluate $\int e^{-\frac{1}{2}} dx$. Take h = 0.25.	
	(b)	Use Gauss elimination method to solve the system of equations	04
		$2x_1 + 4x_2 - 6x_3 = -4;$ $x_1 + 5x_2 + 3x_3 = 10;$ $x_1 + 3x_2 + 2x_3 = 5.$	
	(c)	Derive Euler's formula to solve the initial value problem	07
		$dy = f(x,y)$; $y(x) = y$ Find $y(0,1)$ for $dy = x^2 + y$, where	
		$\frac{dy}{dx} = f(x, y);$ $y(x_0) = y_0.$ Find $y(0.1)$ for $\frac{dy}{dx} = x^2 + y$, where	
		y(0) = 1 using improved Euler's method. Take $h = 0.05$.	
		OR	
Q.5	(a)	Find the root of the equation $x^3 - 9x + 1 = 0$ up to five decimal	03
		places by the Newton-Raphson's method. Take $x_0 = 3$.	
	(b)	Find $f(15)$ from the following table using Newton's divided	04
		difference formula:	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	(c)		07
	(c)	Apply fourth order Runge-Kutta method to find $y(0.1)$ and $y(0.2)$ for	07
		the differential equation $\frac{dy}{dx} = 3x + \frac{1}{2}y$, $y(0) = 1$. Take $h = 0.1$.	
		dx = 2	

Download all NOTES and PAPERS at StudentSuvidha.com