\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV(NEW) - EXAMINATION - SUMMER 2019

Subject Code:2140001
Date:09/05/2019

Subject Name: Mathematics-4

Time: 02:30 PM TO 05:30 PM
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Find the principal argument of $z=\frac{i}{\sqrt{3}+i}$
(b) Check whether the following functions are analytic or not at any point:
(i) $\quad f(z)=x^{2}+i x y$
(ii) $f(z)=z^{2}$
(c) (i) Expand $f(z)=z \cos \left(\frac{1}{z^{3}}\right)$ in Laurent's series near $z=0$ and identify the singularity.
(ii) Show that if c is any $n^{\text {th }}$ root of unity other than unity itself, than $1+c+c^{2}+\cdots+c^{n-1}=0$.
Q. 2 (a) Find and sketch the image of the region $|z|<1$ under the transformation $2 z-i$.
(b) Show that the function $u(x, y)=y^{3}-3 x^{2} y$ is harmonic in some domain D and find its conjugate $v(x, y)$
(c) Find the Mobius transformation that maps the points $z=1, i,-1$ into 07 the points $w=i, 0,-i$. Hence find the image of $|z|=1$.
(c) Evaluate the integral $\int \operatorname{Re}\left(z^{2}\right) d z$, where C is the boundary of the square with fertices $^{0}, i, 1+i, 1$ in clockwise direction.
Q. 3 (a)

Evalugat $\int_{0}^{\infty}\left(x^{2}+i y\right) d z$ along the path $y=x^{2}$.
(b) Find the residue at each pole of $f(z)=\frac{z e^{i z}}{z^{2}+9}$
(c) Expand $f(z)=\frac{1}{(z+1)(z-2)}$ in Laurent's series in the region
(i)
$|z|<1$
(ii) $1<|z|<2$
(iii) $|z|>2$.
Q. 3 (a) Write the Cauchy integral formula and using it evaluate $\int_{C} \frac{\cos z}{z+\pi} d z$ where C is the circle $|z|=4$.
(b) Evaluate $\oint_{C} \frac{2 z-1}{z(z+1)(z-3)} d z$, where C is the circle $|z|=2$.
(c) Using the residue theorem, evaluate $\int_{0}^{2 \pi} \frac{d \theta}{5-3 \sin \theta}$
Q. 4 (a) Find the positive root of the equation $2 \sin x-x=0$ using bisection
(c) Using the power method find the largest eigenvalue of the matrix

$$
\left[\begin{array}{ccc}
1 & -3 & 2 \\
4 & 4 & -1 \\
6 & 3 & 5
\end{array}\right]
$$

Q. 4 (a) Use the secant method in three stages to find the root of the equation $\cos x-x e^{x}=0$
(b) Find an approximate value of $f(3.6)$ using Newton's backward difference formula from the following data:

x	0	1	2	3	4
$f(x)$	-5	1	9	25	55

(c) Using Lagrange's interpolation formula find y when $x=5$ from the following table:

x	1	2	3	4	7
y	2	4	8	16	128

Q. 5 (a)

Use Simpson's $1 / 3$ rule to evaluate $\int_{1}^{2} e^{-\frac{x}{2}} d x$. Take $\mathrm{h} \Rightarrow 0.25$.
(b) Use Gauss elimination method to solve the system of equations

$$
2 x_{1}+4 x_{2}-6 x_{3}=-4 ; \quad x_{1}+5 x_{2}+3 x_{3}=10 ; \quad x_{1}+3 x_{2}+2 x_{3}=5 .
$$

(c) Derive Euler's formula to solve the initial value problem $\frac{d y}{d x}=f(x, y) ; \quad y\left(x_{0}\right)=y_{0}$. Find $y(0.1)$ for $\frac{d y}{d x}=x^{2}+y$, where $y(0)=1$ using drproved Euler's method. Take $h=0.05$.

OR

Q. 5 (a) Find the atal root of the equation $x^{3}-9 x+1=0$ up to five decimal placeg' y the Newton-Raphson's method. Take $x_{0}=3$.
(b) Find $f(15)$ from the following table using Newton's divided difference formula:

x	4	5	7	10	11	13
$f(x)$	48	100	204	900	1210	2028

(c) Apply fourth order Runge-Kutta method to find $y(0.1)$ and $y(0.2)$ for the differential equation $\frac{d y}{d x}=3 x+\frac{1}{2} y, y(0)=1$. Take $h=0.1$.

D ownload all N O T E S and PAPE R S at StudentSuvidha.com

